sexta-feira, 28 de fevereiro de 2020


TRANS-QUÃNTICA SDCTIE GRACELI, TRANSCENDENTE, RELATIVISTA SDCTIE GRACELI, E TRANS-INDETERMINADA.

FUNDAMENTA-SE EM QUE TODA FORMA DE REALIDADE SE ENCONTRA EM TRANSFORMAÇÕES, INTERAÇÕES, TRANSIÇÕES DE ESTADOS [ESTADOS DE GRACELI], ENERGIAS E FENÔMENOS DENTRO DE UM SISTEMA DE DEZ OU MAIS DIMENSÕES DE GRACELI, E CATEGORIAS DE GRACELI.




FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.E DE ESTADOS TRANSICIONAIS =


TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ estrutura eletrônica, spin, radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

x
 [EQUAÇÃO DE DIRAC].

 + FUNÇÃO TÉRMICA.

   +    FUNÇÃO DE RADIOATIVIDADE

  ,      +   FUNÇÃO DE TUNELAMENTO QUÂNTICO.

  + ENTROPIA REVERSÍVEL 

+      FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA

 ENERGIA DE PLANCK

X


  • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
    ΤDCG
    X
    Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
    x
    sistema de dez dimensões de Graceli + 
    DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.[como, spins, posicionamento, afastamento, ESTRUTURA ELETRÔNICA, e outras já relacionadas]..

  • DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
    x
    sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia. [estados de transições de fases de estados de estruturas, quântico, fenomênico, de energias, e dimensional [sistema de estados de Graceli].
    x
número atômico, estrutura eletrônica, níveis de energia 
onde c, velocidade da luz, é igual a .]


  • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
  • x
  • X
  • T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D




Em Mecânica estatística, um ensemble microcanônico é o conjunto estatístico que é usado para representar os possíveis estados de um sistema mecânico que tem uma energia total especificada. O sistema é assumido como isolado, no sentido que o sistema não pode trocar energia ou partículas com seu ambiente, assim o valor da energia total permanece fixo enquanto o tempo passa. A energia, volume, e composição do sistema são mantidas fixas em todos os estados possíveis do sistema.
As variáveis ​​macroscópicas do conjunto microcanônico são parâmetros físicos que influenciam a natureza dos estados internos do sistema, como o número total de partículas , o volume disponível , bem como a energia total . Em consequência, este conjunto é algumas vezes chamado de ensemble , pois cada um destes três parâmetros é uma constante no conjunto.
Em termos simples, o ensemble microcanônico é definido através da atribuição de uma probabilidade igual para cada microestado do sistema cuja energia cai dentro de um intervalo  e . Para todos os outros microestados se assume probabilidade igual a zero. Seja  a probabilidade de o sistema estar em um dado microestado  naquele intervalo de energia. O sistema deve estar em um dado microestado, logo
 .
X

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.E DE ESTADOS TRANSICIONAIS


Se o número total de microestados com igual probabilidade é , então
X

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.E DE ESTADOS TRANSICIONAIS



O intervalo de energia é, em seguida, reduzido em largura até que se torne infinitamente estreito, . No limite deste processo, obtém-se o conjunto microcanônico.
Na prática, o ensemble microcanônico não corresponde a uma situação experimentalmente realista. Para um sistema físico real, existe alguma incerteza na energia devido a fatores não controlados na preparação do sistema. Além da dificuldade de encontrar um análogo experimental, é difícil de realizar cálculos que satisfaçam exatamente o requisito de energia fixa. Sistemas em equilíbrio térmico com o ambiente têm incerteza na energia, e são melhor descritos usando o ensemble canônico ou o ensemble grande canônico.




conjunto canónico (pt) ou conjunto canônico (pt-BR) ou ensemble canónico (pt) ou ensemble canônico (pt-BR) em física estatística é um ensemble estatístico que modeliza um sistema físico em contato com um reservatório térmico de temperatura fixa, supondo que o volume e o número de partículas do sistema também são fixos. O ensemble canônico descreve tipicamente um sistema em contato com um reservatório térmico através de uma parede diatérmica, fixa e impermeável, mas sua aplicação transcende os limites da física.
Para um sistema em equilíbrio assumindo valores discretos de energia, com temperatura, número de partículas e volume fixos por reservatórios, a probabilidade  de encontrá-lo num micro-estado particular  é dada por:
X

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.E DE ESTADOS TRANSICIONAIS



sendo  a energia do microestado  e  a função de partição do sistema, definida por
X

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.E DE ESTADOS TRANSICIONAIS



Fora da física, o formalismo canónico é amplamente utilizado, sendo aplicado, por exemplo, para prever teoricamente a distribuição da rendas da observação de Pareto de que as rendas altas se distribuem de acordo com uma lei potencial inversa. A evidência indica que as rendas altas de diversos lugares dos Estados Unidos se encontram em equilíbrio termodinâmico.

Apresentação física do problema[editar | editar código-fonte]

Imagine-se que se tem um sistema físico em contacto com um banho térmico. Isto quer dizer que está em contacto com uma grande massa a uma temperatura dada, e pelo princípio zero da termodinâmica tenderemos portanto o sistema em equilíbrio termodinâmico com o banho. Nestas condições, a energia não está totalmente determinada, senão que é uma variável aleatória que pode tomar uma série de valores. Desta forma, só podemos falar de probabilidade de que o sistema adopte uma energia determinada em função desta temperatura.

O fator de Boltzmann[editar | editar código-fonte]

Demonstra-se que a probabilidade de que um sistema a temperatura T esteja numa configuração de energia E é proporcional ao fator de Boltzmann:
X

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.E DE ESTADOS TRANSICIONAIS



onde
 é a probabilidade buscada
 é a energia cuja probabilidade se está a procura
 é a constante de Boltzmann
 é a temperatura.
A constante  não é mais que uma constante de normalização imposta para que a soma das probabilidades de todos os estados seja um. Define-se trivialmente como:
X

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.E DE ESTADOS TRANSICIONAIS



onde  é um índice mudo que recorre todos os estados possíveis do sistema com um número de partículas, volume e temperatura dadas.

A função de partição canónica[editar | editar código-fonte]

A constante de normalização  recebe o nome de função de partição canónica ou simplesmente de função partição. Esta é uma função matemática da temperatura, em número de partículas e o volume. Pode-se demonstrar a fórmula seguinte, que relaciona a mecânica estatística com a termodinâmica no conjunto canónico:
X

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.E DE ESTADOS TRANSICIONAIS



Esta equação nos dá a energia livre de Helmholtz do sistema (uma variável de estado termodinâmica) em função das suas variáveis naturais, o que supõe um conhecimento termodinâmico exaustivo do sistema. Portanto conhecer a função de partição é resolver o problema estatístico.




Em mecânica estatística, o Ensemble Grande CanônicoGrande Ensemble ou Ensemble Macrocanônico é um ensemble estatístico que modeliza um sistema termodinâmico em contato com um reservatório térmico e de partículas, com temperatura e potencial químico fixos.
Um dos interesse desse ensemble é sua capacidade de tratar sistemas com número de partículas variável, além do fato que a função de partição grande canônica é às vezes mais simples a calcular que a função de partição do ensemble canônico, como no caso dos gases quânticos de férmions e bósons.

Função de partição[editar | editar código-fonte]

Classicamente, a função de partição do ensemble grande canônico é dada pela soma ponderada da função de partição do ensemble canônico para um sistema de  partículas
X

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.E DE ESTADOS TRANSICIONAIS



onde  é a função de partição do ensemble canônico para um sistema de volume V à temperatura T com o número de partículas N fixo. O parâmetro  é definido abaixo e é chamado fugacidade (ou atividade) do sistema
X

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.E DE ESTADOS TRANSICIONAIS



onde  corresponde ao potential químico.
A função de partição grande canônica ainda pode ser reescrita como uma soma sobre os microestados j do sistema, caracterizados pela energia  e pelo número de partículas ,
X

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.E DE ESTADOS TRANSICIONAIS



onde .

Quantidades termodinâmicas[editar | editar código-fonte]

Se considerarmos  e  como variáveis independentes, o número médio de partículas e a energia interna média do sistema são dados por
X

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.E DE ESTADOS TRANSICIONAIS


Se considerarmos  e  como variáveis independentes, obtemos expressões equivalentes para o número de partículas
X

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.E DE ESTADOS TRANSICIONAIS



Os potenciais termodinâmicos podem igualmente ser obtidos, sendo a conexão com a termodinâmica estabelecida pelo grande potencial  que nos fornece todas as quantidades de interesse no limite termodinâmico. A energia livre de Helmholtz possibilita o mesmo tipo de conexão quando o problema é tratado pelo ensemble canônico.
X

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.E DE ESTADOS TRANSICIONAIS


A pressão, por exemplo, também pode ser expressa em termos da função de partição grande canônica
X

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.E DE ESTADOS TRANSICIONAIS



Estatística de bósons e férmions[editar | editar código-fonte]

A função de partição grande canônica de um sistema de bósons e férmions pode ser facilmente calculada a partir do conceito de número de ocupação, diferentemente da função de partição canônica que não se fatoriza devido as correlações introduzidas pelo princípio de exclusão de Pauli.
Denotamos  o número de partículas no auto-estado  de energia  para um micro-estado específico do sistema. Nesse caso, a função de partição de um sistema de férmions ou bósons independentes e idênticos se fatoriza
X

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.E DE ESTADOS TRANSICIONAIS


sendo essas somas calculáveis a partir do princípio de exclusão de Pauli, que impõe  para férmions e  natural para bósons, de forma que ela se escreve
X

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.E DE ESTADOS TRANSICIONAIS


em que  para bósons e  para férmions.



Grande Potencial é uma quantidade usada em física estatística para tratar especialmente processos irreversíveis em sistemas abertos.[1]
O grande potencial é definido por
X

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.E DE ESTADOS TRANSICIONAIS


onde  é a energia a temperatura do sistema,  a entropia é o potencial químico, e  é o número de partículas do sistema.
A diferencial do grande potencial é dada por
X

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.E DE ESTADOS TRANSICIONAIS


onde  é a pressão e  é o volume, usando a relação termodinâmica fundamental (combinados primeira e a segunda lei da termodinâmica);
X

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.E DE ESTADOS TRANSICIONAIS


Quando o sistema está em equilíbrio termodinâmico,  é um mínimo. Isto pode ser visto, considerando que  é zero se o volume é fixo e a temperatura e potencial químico cessaram de evoluir.

Energia Livre de Landau[editar | editar código-fonte]

Alguns autores referem-se a energia livre de Landau ou potencial de Landau como:[2]
X

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.E DE ESTADOS TRANSICIONAIS



nomeado após o físico russo Lev Landau, que pode ser um sinônimo para o grande potencial, dependendo estipulações do sistema. Para sistemas homogêneos, obtém-se 

Grande potencial para sistemas homogêneos versos não homogêneos[editar | editar código-fonte]

No caso de um tipo de escala invariante de sistema (um sistema em que o volume de  tem exatamente o mesmo conjunto de microestados como  sistemas de volume de ), depois, quando se aumenta o sistema com novas partículas, a energia fluirá a partir do reservatório para preencher o novo volume com uma nova extensão homogénea do sistema original. A pressão, então, deve ser constante no que diz respeito às alterações no volume: , e as partículas e todas as quantidades aumentadas (número de partículas, de energia, de entropia, potenciais, ...) devem crescer linearmente com o volume, por exemplo, . Neste caso, temos simplesmente , bem como a relação familiarizadas  para a energia livre de Gibbs. O valor de  deve ser entendido como o trabalho que extrai do sistema, reduzindo-o a nada (colocar todas as partículas e energia de volta para o reservatório). O fato é que  é negativo, implica que leva energia a realizar esta extração. Tal escala homogénea não existe em muitos sistemas. Por exemplo, quando se analisa o conjunto de elétrons numa única molécula, ou mesmo um pedaço de metal flutuando no espaço, a duplicação do volume do espaço faz o dobro do número de elétrons no material.[3] O problema aqui é que, apesar de elétrons e energia são trocados com um reservatório, o material anfitrião não é permitido mudar. Geralmente em pequenos sistemas, ou sistemas com interações de longo alcance ( aqueles que estão fora do limite termodinâmico), .[4]

Gás Ideal[editar | editar código-fonte]

Ver artigo principal: Gás ideal
Para um gás ideal,
X

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.E DE ESTADOS TRANSICIONAIS



onde  é o grande função de partição é a constante de Boltzmann é a função de partição para uma partícula e  é o inverso da temperatura. O fator  é o fator de Boltzmann.